64 | 0 | 14 |
下载次数 | 被引频次 | 阅读次数 |
针对以车辆为动基座进行重力异常测量试验时,遇到隧道、立交桥、山谷和密林等地面障碍物遮挡导致全球导航定位系统(Global Navigation Satellite System,GNSS)天线无法正常输出定位信息,从而影响重力测量精度的问题,提出了一种基于高度计位置修正的捷联惯性导航系统(Strapdown Inertial Navigation System,SINS)/GNSS集中滤波车载重力测量方法。首先,利用高度计输出的海拔高度对GNSS信号进行自动检测和修正,解决GNSS信号跳变和空缺的问题;其次,使用修正后的GNSS信息进行组合导航和重力测量改正项计算,并利用捷联式惯性标量重力测量模型提取测线重力异常;最后,以EGM2190模型计算的测线重力异常为参考值,对低通滤波后的测线重力异常进行外符合精度评估。结果表明:与传统SINS/GNSS方法相比,所提方法具有明显的精度优势。
Abstract:Ground obstacles, such as tunnels, overpasses, valleys and dense forests, obstruct the GNSS(Global Navigation Satellite System)antenna from outputting positioning information. These affect the accuracy of gravity measurement when conducting gravity anomaly measurement tests using vehicles as the moving base. Thus, this study posed a dual-axis rotating SINS(Strapdown Inertial Navigation System)/global navigation satellite system centralized filtering vehicle mounted gravity measurement method based on altimeter position correction. First,the GNSS signals were detected and automatically corrected using the altitude output of the altimeter, which solved the problem of GNSS signal jump and vacancy. Second, the modified GNSS information was used to calculate the integrated navigation and gravity measurement correction term, and the gravity anomaly of the survey line was extracted using a strapdown inertial scalar gravity measurement model. Finally, adopting the gravity anomaly of the survey line calculated using the EGM2190 model as a reference value, the external coincidence accuracy of the gravity anomaly of the survey line after low-pass filtering was evaluated. The results show that compared with traditional SINS/GNSS methods, the proposed method has an obvious accuracy advantage.
[1] CHIANG K W,LIN C A,KUO C Y.A feasibility analysis of land-based SINS/GNSS gravimetry for groundwater resource detection in Taiwan[J].Sensors,2015,15(10):25039-25054.
[2]李红雨,曹诚,李凤婷,等.航空、航海重力和重力梯度在海洋、未知陆地战略勘探的发展[J].地球物理学进展,2019,34(1):0316-0325.LI H Y, CAO C, LI F T, et al. Development of aieborne and marine gravity exploration and gravity gradient strategic exploration for the ocean and unknown land[J]. Progress in Geophysics,2019,34(1):0316-0325.
[3]王新月,刘杰,孙澎勇,等.基于车载重力测量平台的城市地下空洞快速探测[J].吉林大学学报(地球科学版),2019,49(3):837-844.WANG X Y, LIU J, SUN P Y, et al. Rapid detection of urban underground cavity based on vehicle gravity measurement platform[J]. Journal of Jilin University(Earth Science Edition), 2019, 49(3):837-844.
[4]刘敏,黄谟涛,欧阳永忠,等.海空重力测量及应用技术研究进展与展望(一):目的意义与技术体系[J].海洋测绘,2017,37(2):1-5.LIU M, HUANG M T, OUYANG Y Z, et al.Development and prospect of air-sea gravity survey and its applications, partⅠ:objective, significance and technical system[J]. Hydrographic Surveying and Charting,2017,37(2):1-5.
[5]常路宾,覃方君,查峰.单轴旋转捷联惯导系统重力扰动补偿方法研究[J].导航定位与授时,2018,5(2):12-16.CHANG L B,QIN F J,ZHA F.Gravity disturbance compensation for single-axis rotary modulation strapdown inertial navigation system[J]. Navigation Positioning&Timing,2018,5(2):12-16.
[6] WENG J,LIU J N,JIAO M X,et al.Analysis and on-line compensation of gravity disturbance in a high-precision inertial navigation system[J]. GPS Solutions,2020,24(3):83.
[7]赵予菲.航空重力向下延拓方法研究[D].兰州:兰州交通大学,2023:1-2.ZHAO Y F. Downard continuation methods of aerial gravity data[D]. Lanzhou:Lanzhou Jiaotong University,2023:1-2.
[8]赵军阳,张克凡,张志利,等.捷联式车载重力测量技术发展[J].电光与控制,2025,32(4):58-64.ZHAO J Y,ZHANG K F,ZHANG Z L,et al.Development and research status of strapdown vehicle gravimetry[J]. Electronics&Optics&Control,2025,32(4):58-64.
[9]李东明,郭刚,薛正兵,等.激光捷联惯导车载重力测量试验[J].导航与控制,2013,12(4):75-78,74.LI D M,GUO G,XUE Z B,et al.Gravimetry tests of laser strapdown INS on ground-vehicle[J].Navigation and Control,2013,12(4):75-78,74.
[10]李东明,曾宪超,马杰,等.速率方位平台与激光捷联惯导车载重力测量比较[J].导航与控制,2014,13(4):7-10.LI D M, ZENG X C, MA J, et al. An airborne gravimeter based on the rate azimuth platform INS[J]. Navigation and Control, 2014, 13(4):7-10.
[11] LI X P, JEKELI C. Ground-vehicle INS/GPS vector gravimetry[J]. Geophysics, 2008, 73(2):I1-I10.
[12]魏国,杨泽坤,高春峰,等.基于二维激光多普勒测速仪的捷联式车载自主重力测量方法[J].红外与激光工程,2023,52(6):339-346.WEI G, YANG Z K, GAO C F, et al. Strapdown vehicle autonomous gravimetry method basrd on two-dimensional laser Doppler velocimeter[J].Infrared and Laser Engineering,2023,52(6):339-346.
[13]YU R H,CAI S K,WU M P,et al.An SINS/GNSS ground vehicle gravimetry test based on SGA-WZ02[J]. Sensors(Basel), 2015, 15(9):23477-23495.
[14]YU R H, WU M P, CAO J L, et al, A new method of GNSS fault data detection for strapdown land vehicle gravimetry[C]//2018 IEEE International Conference on Applied System Invention(ICASI), Piscataway, NJ, USA:IEEE, 2018:299-302.
[15]杜学禹,王茂松,崔加瑞,等.一种高精度自主式组合导航系统滤波算法[J].中国惯性技术学报,2021,29(1):55-61.DU X Y,WANG M S,CUI J R,et al.A high accuracy Kalman filtering algorithm for vehicle selfcontained integrated navigation[J].Journal of Chinese Inertial Technology,2021,29(1):55-61.
[16] WEI M, SCHWARZ K P. Flight test results from a strapdown airborne gravity system[J].Journal of Geodesy,1998,72(6):323-332.
[17] ZHANG K F, ZHAO J Y, ZHANG Z L. A method for land vehicle gravity anomaly measurement combining an inertial navigation system,odometer, and geo-information system[J]. World Electric Vehicle Journal,2024,15(8):368.
[18]严恭敏,翁浚.捷联惯导算法与组合导航原理(2版)[M].西安:西北工业大学出版社,2023:78-94.
[19]于瑞航.捷联式车载重力测量关键技术研究[D].长沙:国防科技大学,2017:42-43.YU R H.Research on key technologies for strapdown ground vehicle gravimetry[D]. Changsha:National University of Defense Technology, 2017:42-43.
基本信息:
DOI:10.20189/j.cnki.CN/61-1527/E.202502005
中图分类号:TN967.1;P223.3;E91
引用信息:
[1]张志利,张克凡,赵军阳.基于高度计位置修正的SINS/GNSS车载重力测量方法[J].火箭军工程大学学报,2025,39(02):39-46.DOI:10.20189/j.cnki.CN/61-1527/E.202502005.
基金信息:
国家自然科学基金(62305393); 173基础加强领域基金(2021-JCJQ-JJ-0871)